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A Navier-Stokes direct spectral simulation code was modified to produce stationary 
and nearly isotropic turbulence in three dimensions. An approximate - energy 
spectrum was maintained over the entire range of wavenumbers by simultaneously 
driving the fluid and supplementing the ordinary viscosity with a subgrid-like energy 
sink in the last 15 yo of the spectrum. Half-tone and contour plots of the fluctuations 
in the vorticity, rate-of-strain tensor and helicity show increasing ‘ spottiness’ as the 
system evolves in time. Probability distributions and cross-correlations among these 
three quantities were also obtained. The flatness factor of the longitudinal velocity 
derivative, the longitudinal structure functions and the fluctuations in the locally 
averaged dissipation rate are consistent with some degree of intermittency, but do not 
unambiguously demonstrate its presence in the simulated A ows. 

1. Introduction 
Large-scale numerical simulations have been used both to test the predictions of 

closure models (Orszag & Patterson 1972a, b;  Herring & Kraichnan 1972) and to 
investigate numerous flows of engineering interest (see, for instance, the Proceedings 
of the 1977 Symposium on Turbulent Shear Flows held at  Pennsylvania State Univer- 
sity). The first extensive calculations for homogeneous isotropic turbulence were 
reported by Orszag & Patterson (1972a, b) .  They were restricted to a cubical mesh of 
325 points and encompassed a range of 16 in wavenumber. In order to perform an 
‘honest ’ simulation, in which the molecular viscosity is used and for which truncation 
errors are negligible, R, was limited to around 40. In  addition, only decay calculations 
were done. 

Turbulent flows that are of practical interest are not homogeneous and isotropic and 
they are most often simulated with finite-difference codes, which are generally easier to 
implement than spectral methods. For shear-flow problems, one can let the mesh move 
with the mean velocity and use periodicity to fix the momentum and mass fluxes on 
oppositeendsofthe grid (Deardorff 1970; Schumann 1975). A subgrid parameterization 
is needed to account for the unresolvable scales of motion since R, is often quite large. 
Simulations of shear flows may be stationary, but they are not homogeneous and 

t Present address: Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, 
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isotropic. If Orszag’s (1 971) argument, that N 3  Fourier modes are equivalent to a grid 
with (2N)3 points, is accepted, then the code we use is competitive with the largest 
finite-difference codes currently running (Clark, Ferziger & Reynolds 1977). 

The present study was  in part motivated by a number of models that exhibited 
temporal intermittency when as few as four octaves in wavenumber were included 
(Siggia 1977, 1978). One would naturally like to see whether a numerical simulation 
would show any evidence of intermittency. A numerical experiment could yield both 
subjective manifestations of intermittency, such as spottiness in a half-tone or density 
plot, or more objective measures, such as the deviation of high-order structure functions 
from Kolmogorov’s - C law. Also, comparisons between different determinants of 
intermittency, which are not accessible with single hot-wire anemometer measure- 
ments, are possible. Irrespective of any connexion with intermittency, one can 
assess the correlations between the vorticity, rate-of-strain tensor, and helicity both 
visually and statistically. 

Our simulation was performed with a direct spectral simulation code (Orszag & 
Patterson 1972a, b )  which had been trivially modified to produce stationary isotropic 
turbulence that was essentially homogeneous. To extract maximum information from 
the limited range of wavenumbers simulated, the largest modes present were driven, 
and we adjusted the dissipation to achieve stationarity. Stationary turbulence 
removes the uncertainties associated with a changing spectral shape and simplifies 
statistical averaging. 

Two distinct techniques for forcing the system were implemented. Both were static 
(i.e. no stochastic forces were present) and produced a flow which was isotropic and 
homogeneous to a good approximation. The latter symmetries were imposed in order 
to achieve some resemblance to the small scales in a fully turbulent fluid in the small 
range of wavenumbers contained in the code. 

Elimination of all truncation errors at  large wavenumbers would require a viscosity 
so large that the entire energy spectrum would be considerably steeper than -;. 
Instead, a more realistic, though less controlled, simulation was done by adopting a 
subgrid-like parameterization to the direct spectral simulation code. We thus sup- 
plemented the viscosity with an additional damping that acts only on the upper 15 yo 
of the spectrum. By adjusting parameters, it was possible to achieve a good approxi- 
mation to a -Q law for all wavenumbers. For purposes of comparison we have also 
analysed data obtained from an ‘honest’ simulation in which the viscosity is the 
only source of damping and R, N 40. The numerical procedures and energy spectra 
are detailed in 8 2. 

As the system evolved, the velocity and vorticity vectors in real space were periodic- 
ally archived. This permitted the later calculation of the strain tensor 

eij = a( 8, vj + ai vi) 
and various other quantities. Samples of these data are displayed graphically in Q 3. 

Histograms confirm that the vorticity and tr e2 ( = eii eiz) in the evolved system 

are ‘spottier’ than they would be for a Gaussianly distributed random velocity field 
with the same energy spectra. Cross-correlation coefficients between 02,  t r  e2 and Jv.w( 
are also computed. A tabulation of flatness factors, longitudinal structure functions 
and dissipation fluctuations concludes $3.  

3 

i , j = 1  
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2. Numerical methods and energy spectra 
Details of the direct spectral simulation have been discussed in a number of papers 

(Orszag &Patterson 1972a, b ;  Riley & Patterson 1974; Schumann & Patterson 1978a, 
b ;  Pouquet & Patterson 1978)) and we shall reiterate only a few salient features that 
are particularly relevant to our calculation. The fluid is confined to a box of side 
7~ cm and periodically continued. Physical units are employed for ease of comprehen- 
sion. The units of length and time can be rescaled to match the kinematic viscosity 
to any particular fluid. The velocity is represented either in terms of 323 Fourier 
modes or on a lattice of 323 points. The wavenumber range is effectively from 2 to 
2 x 2424 N 31.1. The upper limit is slightly less than 32 to simplify the removal of 
aliased interactions (Patterson & Orszag 1971). 

The available wave vectors are conventionally divided into 15 shells 

with I 2n < k c 2 n i - 2 ,  n = 1 ,2 ,  ... 14, 

30 < k < 2x242* .  

Energy spectra were drawn from a plot of the 15 points representing shell averages 
of 3 V k v - k )  where v k  is the velocity in Fourier space. There is a noticeable amount of 
statistical scatter in the energies of the first two shells since they represent averages 
over only 26 and 66 Fourier modes, respectively. The last shell is incomplete and 
contains 1662 modes instead of 3074. The energy in the last shell was multiplied by 
the appropriate ratio in drawing spectra. 

To compute the initial veIocity, half the available wavenumbers were selected such 
that no two were related under reflexion in the origin. Six Gaussianly distributed 
random numbers were chosen for the real and imaginary parts of v k .  The longitudinal 
part of v k  was projected out and the transverse part scaled to produce a - & spectrum. 
The relation v+ = vg was used to fix v - k .  

The time differencing was done by a leapfrog method with a time step of 0.01 s 
for (v2) N 3 .  The optimal time step was found empirically. Smaller steps increased 
the accuracy only slightly, while somewhat larger steps resulted in a numerical 
instability. A single time step required about 6 s on a CDC 7600 computer. 

We wish to driTe the largest wavenumbers in our system in as homogeneous and 
isotropic a manner as possible. Anisotropies and inhomogeneities in the large scales 
are expected to relax as the cascade proceeds, but a range of only 16 in wavenumber 
is insufficient for this to occur. The stochastic driving forces used in statistical theories 
are awkward to implement numerically and not generally realized experiment,ally. A 
large-scale shear is more common experimentally but inhomogeneous, while wind- 
tunnel experiments are non-stationary. The compromise we adopted, which is trivial 
to implement numerically, was to freeze the first shell of wavenumbers at  their initial 
values. A static and reasonably isotropic shear results that drives the remaining 
modes. A randomly sheared flow is not strictly homogeneous in the absence of an 
average over the large scales. However, in our one realization, the kinetic energy 
appeared to be uniformly distributed in space and small-scale properties were in- 
distinguishable from results obtained by a second method of forcing [see (2 .3)]  that 
does result in homogeneity. 

Our technique for continuously stirring the system can be regarded either as an 
isotropic version of the usual shear flow or as a model of the eddies several cascade 



570 E.  D. Siggia and G .  S. Patterson 

Large scales 
Run 1 0.328-0.341 

0.323-0.343 
0.298-0.364 
0'313-0.351 

Run 2 0.269-0.441 
0.269-0-393 
0'308-0.372 
0.300-0.360 

Small scales 
0.330-0.339 
0.322-0.342 
0.328-0.338 
0.328-0.337 
0.320-0.352 
0.326-0-346 
0'331-0.337 
0.331-0.336 

TABLE 1. Degree of large- and small-scale isotropy for rune 1 and 2. Corresponding data are given 
in table 2 and figures 3 and 5. Shown in the first and second columns are the minimumand maximum 

of (vy)/X ($) and ( w i ) / X  (w:) respectively for T = 0,4*0,  6.0 and 8.0 s .  The velocity and vorticity 

are representative of the large and small scales respectively. The first shell of wavenumbers was 
frczen at  its initial value, which proved to be quite isotropic in the first run but evolved according 

to (2.3) in the second run. This explains the greater variability of ( v ~ ) / c ( v ~ )  in the second run. 

There was no obvious correlation between the directions of the maximum or minimum com- 
ponents at  different times. The isotropic relationship (wz)/(trez) = 2 was satisfied to  within a 
fraction of a per cent at all times. 

3 3 

i=l  i= 1 

3 

i= l  

1 
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FIQURE 1. Sample energy spectrum of turbulence driven by the same static random shear 88 in 
run 1 (cf. figure 3) but with v = 0.008 cmz/s and no additional damping. The system has equili- 
brated by T = 3-0 s and is characterized by R, = 42, skewness = 0.43 and Kolmogorov micro- 
scale = 39 cm-'. A -! spectrum (solid line) is drawn for comparison. 
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FIQWRE 2. Energy spectrum of turbulence subject to the same random shear and viscosity 
(V = 0.0034) as run 1 (cf. figure 3) but with no additional damping. The flow is statistically 
stationary by T = 3.0s. The excess energy at large k is a characteristic truncation effect when 
the viscosity is too small. The initial spectrum is almost coincident with the solid line, whose 
slope is -+. 

steps down from the largest anisotropic ones. The latter viewpoint is somewhat in- 
adequate since the first shell is frozen in a randomly chosen configuration which in 
reality would evolve, though more slowly than the other modes in the system. The 
largest modes are Gaussianly distributed and necessarily do not contribute to such 
quantities as the skewness. This last shortcoming might have been remedied by 
letting all the modes evolve for a short time and then freezing the first shell. 

In the course of the numerical integration, several measures of isotropy were 
monitored (table 1). Angle brackets will henceforth denote a spatial average at a 
fixed time. The lack of isotropy in the initial data represents inherent sampling errors 
and suggests what degree of anisotropy is significant. The three independent second- 
order longitudinal structure functions and the six transverse ones (i.e. x and y velocities 
separated along the z axis, etc.) agreed to  within 5 

It has frequently been noted that using too small a viscosity in a simulation causes 
the energy spectrum to increase at the largest wavenumbers, which is indicative of a 
tendency towards statistical equipartition. A viscosity large enough to eliminate 
truncation errors would result in a spectrum representative more of the dissipation 
range than of the inertial range. Figures 1 and 2 illustrate these possibilities. 

To obtain position-space data that would best correspond to real turbulence, an 
additional source of damping was added in the last few shells to eliminate the ‘tail’ 
in figure 2. It proved surprisingly easy to match a - Q law by adjusting v and a in the 
following expression : 

at all separations. 

dv,/dt = . . . - vkzv, - a(k2  - k:)2 q ( k  - k d )  vk, (2.2) 
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Run 1 Run 2 (a) Run 2 (b) 
Integration times ( s )  0-9.0 0-5.5 7.0-11.0 
Diesipation parameters, 
equation (2.2) 
Y (om"@ 0.0034 0.0025 

kd (Cm-') 26.0 25.38 
a (cm*/s) 1.275 x 9.375 x 10-6 

Characteristic times (8 )  

n/VI.UU. 

W/&3* 
l/WI.rn.#. 
l /( tr  ez) 4 

Characteristic lengths (em) 
(wavenumbers, em-') 
Size of box 
Integral scale 
Taylor microscale 
@*/v3) f  

Skewness 
RA 
ei (cm2/ss) 

Other parameters 

1.7 
2.1 
0.058 
0.083 

3.14 
0.57 
0.25 
73 

2.2 
2.6 
0.055 
0.10 

3.14 
0.64 
0.25 
77 

2.6 
3.0 
0.09 
0.12 

3.14 
0.61 
0.26 
70 

0.36 0.33 0.34 
75 90 80 
1.17 0.66 0.35 
0'76-1.02 0.80-0.96 0.80-0.95 

TABLE 2 .  Some characteristic parameters for the run driven by a random shear, run 1, and the case 
with linear forcing (equation (2.3) with = 0.4s-'), run 2. The energy spectrum for the first run 
is given in figure 3. The two separate entries for run 2 correspond to the upper and lower curves 
in figure 5. Consult the text for details. The rate of energy input is denoted by ei and the rate of 
energy dissipation by the viscosity v by e d .  Except for a and k d r  all other parameters are defined 
conventionally (see Orszag & Patterson 19'723; or Batchelor 1953, chap. 3). When appropriate, 
parameters refer to times for which the system appears to be statistically stationary. Statistical 
fluctuations are generally of order 5 yo in most quantities. 

where the dots represent the nonlinear terms. The step function 7 is one when its argu- 
ment is positive and zero otherwise. The values of v, a and k, which we used are given 
in table 2. The supplemental damping rises smoothly from zero and is appreciable 
only in the outermost two shells. There is a tendency for the energy in the thirteenth 
shell to be a bit larger than it should be for this reason. A damping which increased 
as k2 - ki would probably have worked equally well. If v was too small, but a sufficiently 
large to  make the last few shells scale properiy with respect to the large scales, the 
energy spectrum appeared flat for intermediate wavenumbers. 

A quantitative measure of the relative importance of the two terms in (2.2) is given 
by the ratio of ei and e, (the energy input and dissipation rates); see table 2. Approxi- 
mately 85 yo of the energy fed into the system by the static shear is dissipated by the 
ordinary viscosity. 

We believe that for T 2 2-5 s the randonly sheared model is statistically stationary 
and furthermore that the energy spectrum is intrinsic and independent of initial 
conditions. Figure 3 shows the energy spectrum and the scale of fluctuations. A 
number of characteristic times me given in table 2. Those applicable to the large 
males are something of an overestimate since the largest modes that are free to evolve 
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FIUURE 3. Energy spectrum of the turbulence driven by a random shear for run 1 (of. table 2). 
The solid line shows what a - f spectrum would look like when plotted from values for averages 
over the 15 shells defined in (2.1). The initial spectrum nearly coincides with the solid line. The 
points show the spectrum at T = 4.0 8. The error bars are set at the maximum and minimum of 
the shell-averaged energies for 3.0 < T < 9.0 a.  

have a minimum wave vector of 4 rather than 2. Another measure of the equilibration 
time is provided by figure 4, which shows the evolution of a random shear-driven flow 
with an initial spectrum cut-off at  k N 10. Different initial conditions resulted in 
somewhat less static shear than was present in figure 3, although the same viscosities 
were used. This is responsible for the steeper spectrum in figure 4. A somewhat smaller 
viscosity, we believe, would bring the two figures into coincidence. 

Table 2 also gives a number of characteristic times for the small scales. Related to 
these are the times necessary for ei/(v2)>a and the skewness, both initially zero, to 
attain their asymptotic values given in table 2. These times are 0.45s and 0.15s) 
respectively. The skewness in table 2 is somewhat less than that found by Orszag & 
Patterson (1972ct, b).  Their value is more correct because with our spectrum non- 
negligible contributions to  the longitudinal derivative of the velocity would come 
from modes beyond our upper cut-off. 

When the time integration was begun, E,  began to decrease because the viscosity 
acts instantaneously while a finite length of time is required for ei to build up. The 
energy spectrum begins to rise after T N 1.0 s. No secular changes were observed after 
T N 2.5 s. The fluctuations in different bands shown in figure 3 are not uncorrelated. 
Typically, the energy in the second or third shell fluctuates and the rest of the spectrum 
follows. A tendency towards a step-like pattern is visible in some of the intermediate 
bands in figure 3. This was also observed by Pouquet & Patterson (1 978) and is perhaps 
due to truncation errors. 



574 E .  D. Siggia and G .  S. Patterson 

G 

1 0 - 3  
I 10 102 

k (cm-')  

FIGURE 4. Evolution of the initial spectra E ,  = k-9 exp [ -;$-(k)4] with different initial conditions 
but the same dissipation parameters as in figure 3. The spectra a t  T = 3.0 and T = 4.0s were 
identical and gave R, - 7 1. They are somewhat steeper than the spectrum in figure 3 because the 
random shear is smaller but the dissipation was kept the same. 

It was noted above that about 85% of the energy input was dissipated by the 
viscosity and the rest by the supplementary damping. This implies both that the 
second term in (2.2) is not too important (our simulation is only 15 yo dishonest) and 
also that our calculation does not really represent an inertial range despite a good - Q 
spectrum. To some extent, however, the viscosity acts like an eddy damping to 
account for the coupling to  modes beyond k = 32. The band-averaged viscous 
dissipation rate normalized by ei varies from about 0-045 to  0.09 from one end of 
the spectra to the other, approximately as k*. For a stationary flow, this will equal 
the net energy transfer into each shell. There is a tendency, possibly just an artifact 
of our parameterizations, for energy spectra to appear to  be slightly steeper than - 9. 
Spectra also flatten at  small k,  probably because of the absence of energy input from 
modes with k < 2. Shell averaging can also distort the energy spectra, for smalI k 
since 

k-9 dk 

does not scale as n-8 for n small. To compensate for this distortion, the nth shell was 
plotted a t  k = 2?t + 1. The resulting initial spectrum is virtually a straight line with 
slope 1.67-1.70 on a log-log plot. 
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k (cm-')  

FIGURE 5 .  Energy spectra generated by the linear forcing defined in (2.3) with R = 0.4s-'. The 
system followed the upper curve until T N 5.5 s ,  then shifted to the lower curve for 7.0 T < 11.0s. 
Additional data are given in table 2. The solid line is a -:power law. 

The second method employed to keep the energy in our system stationary is a 
simple linear forcing applied to the f i s t  shell: 

dvkldt = nv,+ ..., 2 < k < 4, (2.3) 

where the dots represent nonlinear terms and the dissipation function in (2.2).  This 
method gives potentially slightly more information from a fixed range of wave- 
numbers, since the first shell is able to adjust in response to the smaller scales, but it is 
less physical than the static random shear. Lilly (1972) has used methods of forcing 
similar to ours in his simulations of two-dimensional flows. 

Again the driving mechanism distorts the spectrum slightly. In  reality, modes with 
k < 2 should drive both the first shell and successive shells with decreasing efficiency. 
Equation (2.3) omits energy input to shells beyond the first and leads to excess energy 
at  small k, which is visible in figure 5. The initial behaviour of the energy spectrum 
was similar to that for the randomly shewed run. 

Two sets of data are shown in figure 5 and table 2 for the second run, with (2.3), 
because the spectrum moved from the upper to lower curves during the interval 
5.5s < T < 7.0s. This behaviour is probably an artifact introduced by (2.3). If some 
averaged measure of energy transfer is plotted as a function of the energy in the first 
band, we hypothesize that it can have more than one intersection with the corre- 
sponding curve of energy input from (2.3)) which is linear with a slope of 2 0. The 
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(C) 

FIUURE 6. Plots of (a) the mean-square vorticity w2, (a) the trace of the rate-of-strain tensor 
squared when its determinant is positive and zero otherwise, 7 (det e )  tre2, and (c )  the helicity 
V. o, all for the same planar slice of data a t  T = 0. The contour interval for the helicity is 10 cm/s2. 
Negative contour lines are dashed. The relation between magnitude and density is linear in the 
half-tone plots. At T = 0,  (det e) = 0 so a second plot of tr ea for det e negative was not drawn. 
This figure and figures 7 and 8 correspond to the energy spectra for run 1 (of. figure 3 and the first 
column of data in table 2). 

system can then jump from a nearly stationary state to a possibly stable one. Even 
so, the spectrum up to T N 5 s was sufficiently stable that we believe that the corre- 
sponding real-space data would be as meaningful as those for the lower branch. The 
lower curve was somewhat steeper than the upper since the viscosity was not readjusted 
to maintain the Reynolds number (cf. figure 4). 

In  the next section, results from the randomly sheared model predominate over 
those from the linearly forced model because we feel that it  is a better approximation 
to an actual experiment even though it is not strictly homogeneous. The data from 
either branch in figure 5 are generally within the scatter observed for the first model 
at different times. This confirms that the particular static shear used for the first run 
(figure 3) has no appreciable effect on the properties which we shall examine. 

3. Numerical results for the ‘small ’ scales 
Many authors have noticed that the vorticity plotted from large-scale simulations 

looks ‘spotty’, but one can often be misled by ordinary statistical fluctuations. For 
this reason, the initial data, which are Gaussianly distributed and possess approxi- 
mately the same energy spectrum as the evolved flows, have been plotted for 
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FIGURES 7 (a, b ) .  For legend see opposite page. 
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I (d  ) 

FIGURE 7. Plots of (a) oa, (b) 7 (det e) t r  e2, (c )  7( - det e) t r  e2 and (d) v. w as in figure 6 except that 
now T = 6.0 s and the maxima of w2 and tr e2 have increased by factors of 2.8 and 1.7 respectivel-, 
from their values in figure 6. Corresponding points are marked by arrows. 
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FIQURES 8 (a, b ) .  For legend see opposite page. 
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W 2 1  < W ‘  > 
FIGURE 9. Probability distributions of w2 in real space at  T = 0 (solid line) and T = 4.0 (dashed 
line) scaled to hare the same mean. Actually ( w 2 )  = 2 4 5 ~ - ~  at T = 0 and 2 8 9 ~ - ~  at T = 4.08. The 
shaded rectangle represents data at  T = 4.0s that exceeded 6 ( w 2 ) .  Data at  T = 5.0, 6.0 and 7.0s 
were very similar to those shown at  T = 4.0. 

comparison. In real space our data occupy a cube of 323 points. The density and contour 
plots were made from planar slices perpendicular to the x axis and periodically extended 
to a 33 x 33 mesh. Both plotting routines do some smoothing. Three-dimensional 
perspective contour plots were also generated but proved a less effective means of 
displaying the output. 

Data at  times 0, 6 s and 7 s for w2 are shown in figures 6 (a ) ,  7 (a )  and 8 (a).  The T = 0 
plot is typical of all the initial slices. Some observers might describe it as ‘spotty’. 
The plot at 7 s is typical of the evolved data while the sample we selected at  6 s was 
among the most intermittent. 

The dramatic difference between the initial and evolved data is partially a con- 
sequence of the plotting algorithm, which establishes a linear scale of density spanning 
the range of values to be portrayed. The maximum data point in figure 7 ( a )  is 2.6 
times larger than the maximum in figure 6 (a ) ,  while the minima are both nearly zero. 
A high value of w2 a t  a few points makes the remaining regions appear less active. If 
plotted on the same absolute scale, figures 6 (a )  and 7 (a) would not look very different, 
as the smoothed histogram in figure 9 demonstrates. The initial and time-evolved 
vorticities differ only in the tail of the distribution. The two histograms have been 
scaled to have the same mean, so the small upward shift of the energy spectrum for 
T 2 3 s, apparent in figure 3, has been factorized out. The average of u2 increases by 
only 20 yo so a similar rescaling would not have altered figures 6 (a )  and 7 (a).  

The rate-of-strain tensor eij  = &(ai wj + ar wi)  controls the local deformation of 
material surfaces while w describes the change in their orientation. The three eigen- 
values of e i j  are determined by a quantity proportional to the local dissipation rate 
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FIGURE 10. Probability distributionsof tr e2 in real space plotted according to the same conventions 
as in figure 9. At T = 0 and 4.0 s, (tr e2) = 122, and 145s-1 respectively. 

t r  e2, the determinant det e of eii and the incompressibility constraint t r  e = 0. Depend- 
ing on whether det e is positive, negative or zero, a spherical surface is deformed into 
a cigar, pancake or ribbon. Betchov (1956, 1975) has shown for isotropic turbulence 
that 

so we expect regions of negative determinant to predominate. The sign of det e is 
displayed by plotting tr  e2 twice, once with tr  e2 set to zero at points where det e < 0 
and then with tr  e2 set to zero whenever det e > 0, with the same overall scale in both 
figures. Contour plots of det e were also made but are not shown, partially because the 
determinant can be small or zero even when substantial shear exists at  the point in 
question. 

The rate-of-strain tensor for one sign of the determinant is shown in figure 6 ( b )  
for T = 0. There is statistical symmetry between positive and negative values of the 
determinant. A bias towards a negative determinant is apparent in figures 7 ( b ) ,  7 (c), 
8 (b )  and 8 (c). Comparison of the composite plots of tr  e2 again indicates increasing 
spottiness when T > 0. The histogram in figure 10 shows, in analogy with figure 9 
for the vorticity, that the initial and evolved flows differ appreciably only in the tails 
of the distribution. 

Figures 8 (b )  and (c) are representative of about 10-20 yo of our data that showed a 
region of intense shear with det e > 0. We checked in addition that the determinant 
was not near zero in most of this region. 

A qualitative impression of the correlation between tre2 and w2 is obtained by 
examination of the figures. The region of most intense vorticity in figure 7 ( a )  falls 
between the twin regions of greatest shear in figure 7(c). The region of maximal 

0~ (det e>, 
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TABLE 3. Normalized cross-correlation functions for run 1 (table 2) at T = 0 and the spread of 
values, uncorrelated in time, for T = 4, 5,  6, 7 a. Data for the second run are similar. We define 
(ab>c = (4 - (a)@). 

vorticity in figure 8 (a)  is not coincident with the maximum of tr  e2 but correlates better 
with figure 8 ( b )  than with figure 8 (c). A quantitative measure of the cross-correlation 
is given in table 3. Whether normalized by the average values of the two fields or by 
the Cauchy-Schwartz bound on (a2 tr  e2)c,  the cross-correlation is not large. 

Helicity fluctuations in a turbulent flow are of potential interest for the magnetic 
dynamo problem (Kraichnan 1976 a) ,  but we are unaware of any experimental measure- 
ments. For statistically isotropic fields, of course, (Iv . 01) = 0. Our initial data yielded 
(Iv. 01)  = 1.14 cm/s2, while for later times the average helicity fluctuated between 1.0 
and 2.2 cm/sz. Any of these numbers is a factor of 10 larger than what would be expected 
from the average of 323 independent numbers of magnitude (Iv . w I) = 11 or 14 cm/s2 
fortheinitidandevolveddatarespectively. The rather large values of (Iv. 0 1 )  whichwe 
found are not a statistical fluke, but arise because the velocity is determined by just 
the largest scales and there exist substantial correlations between the helicity at  
neighbouring points. 

Contour plots of the helicity are shown in figures 6 ( c ) ,  7 (d) and 8 (d). The regions 
of intense helicity appear to be more segregated in the evolved flows though the 
variation of max Iv. 01 is not very large and is largely accounted for by the increase 

in ( 0 2 ) .  Histograms of I v . w I show less variation for T > 0 than do those for thevorticity 
or strain rate, probably because helicity is not an inertial-range quantity. Comparison 
among figures 6, 7 and 8, and the relevant entries in table 3 imply that the helicity is 
moderately correlated with the vorticity and nearly uncorrelated with tr  8. The lack 
of correlation between [ v . w 1 and tr e2 is to be expected since the latter is conventionally 
associated with vortex stretching and energy transfer while large values of the helicity 
indicate that v x w is small. 

The probability distribution of the normalized helicity I v . w I / IvI I w 1 appears in 
figure 11.  For the initial flow, it is essenhlly flat because the velocity and vorticity 
are determined by opposite ends of the energy spectrum and so in real space are nearly 

T 
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FIQURE 11. Probability distribution of the magnitude of the normalized helicity at T = 0 (Polid 
line) and an average of data at T = 4.0, 5.0, 6.0 and 7.0s (dashed line). 

independent vectors. This contention is supported by evaluation of 

which is zero initially and varies between 0.01 and 0.09 for T > 3.0. The probability 
distribution of the cosine of the angle between two random uncorrelated unit vectors 
is constant in three dimensions, but would tend to zero at the upper end in higher 
dimensions. For the evolved data, v a n d o  tend to be parallel. This probably has 
nothing to do with intermittency. The nonlinear term in the Navier-Stokes equations 
can be mitten as the transverse part of v x o so field configurations with normalized 
helicity near one may simply evolve more slowly and so be over-represented in the 
probability distribution. 

We explain in the conclusion why it may be of interest to consider the fluctuations in 
a relative helicity that is Galilean invariant and independent of the energy-containing 
scales, but no longer conserved. One possible definition is 

h,(r) = ( v ( r )  - ~J,v(r’)dSr’) . o ( r ) ,  

where V is a symmetrical volume centred about the point r.  The relative helicity is a 
mixture of inertial- and dissipation-range quantities when p = V* is an inertial-range 
length. Existing phenomenological theories of intermittency suggest that (h:,) should 
scale as pS-fp (Mandelbrot 1976; Frisch, Sulem & Nelkin 1978; Nelkin & Bell 1977) 
orpj-fp (Kolmogorov 1962). We shall apply the definition (3.1) to our data by replacing 
the volume integral by a sum over a cube of lattice points centred at r .  

A histogram of (h,( for 33 points is given in figure 12. Data for 23 or 43 points are 
similar. The average of I h,( increases by about 50 yo for T 2 2 s while the corresponding 
change for the true helicity is closer to 25 yo. The ratio of the second moments of the 
two distributions in figure 12 is 4.2, compared with a ratio of 1.9 for the actual helicity. 
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Ih,l/< Ilzvl > 
FIGURE 12. Probability distributions with identical first moments for the magnitude of the 
relative helicity defined in (3.1) for an averaging volume of 33 points at  T = 0 (solid line) and 
T = 4.0s (dashed line). The actual values of (Ihvl) are 21.0cm/s2 and 31.lcm/s' at  T = 0 and 
4.0 a respectively. 

T X Y z 

0 3-06 2-99 2.97 
4 4.05 3.86 3.80 
5 3.89 3-77 3.80 
6 3-65 3.84 3.90 

TABLE 4. Flatnese factors for the longitudinal velocity derivative in the z, y and z directions at 
times T = 0,4, 5 and 6 s for run 1. Data for the second run in table 2 are similar. 

Density plots of kinetic energy would depend largely on the first wavenumber shell 
and were not drawn. Vector-field plots of two of the three velocity components were 
made and of course checked against the corresponding vorticity component. 

The traditional indicators of intermittency have been the flatness of longitudinal 
derivatives, high-order longitudinal structure functions and dissipation spectra. They 
are examined in succession. Computed flatness factors are given in table 4. The initial 
value of 3.0 is indicative of a Gaussian ensemble and suggests that the aliased flatness 
computed for T > 0 may be physically appropriate (Orszag 1971). 

Aliasing arises whenever a spatial average is performed over the product of n 2 2 
fields defined on a finite mesh in Fourier space. The spatial sum converts into n 
k-space summations plus the constraint that the sum of the wave vectors equals 0 
modulo 32 in our calculation. In  an infinite system with no truncation errors, the 
wave vectors would sum to zero. The aliasing problem is potentially significant for 
derivative quantities since they weight the largest wave vectors. An aliased skewness 
was computed from a spatial average of ( a ~ ~ / a ~ ~ ) '  and compared with the skewness 
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FIGURE 13. Second- and third-order longitudinal structure functions [see (3.3)] normalized by the 
mean velocity and Kolmogorov’s (1941) prediction for their r dependence at T = 0 (solid line) 
and T = 6.0s (dashed lines). The third-order structure function at T = 0 was essentially zero and 
waa not reproduced. The distance r is an integer that runs from 1 to 32, although only velocities 
at points separated by up to half the maximum possible were plotted. The data at  T = 4.0, 5.0 
and 7.0 s looked similar to those shown at T = 6.0 s .  

factors in table 2, which were computed in Fourier space with the correct constraint. 
The aliased quantities were 4-9 yo too large. Values of the flatness factor for T > 0 are 
definitely larger than 3 but rather less than the experimental values, which axe closer 
to five for our RA (see figure 13 of Kuo & Corrsin 1971). 

Flatness factors computed for the T > 0 data in figure 1 (R,  - 40) were at least 
as large as those in table 4. In  addition, plots of the vorticity and rate of strain 
are qualitatively similar to those reproduced. The data in figure 2, on the other 
hand, gave decidedly smaller flatness factors and the vorticity plots appeared 
to be more nearly Gaussian. This is to be expected since the modes in the ‘tail’ 
at large k are more representative of an equilibrium distribution rather than a 
turbulent one. 

Figure 13 contains plots of the longitudinal second- and third-order structure 
functions averaged over the three principal directions, e.g. 

where Rn is a vector with integer components, r an integer, m = 2 or 3, and ?ri a unit 
vector in the ith direction. The velocity is periodically continued when Rk+r 
exceeds 32. 

If the energy spectrum in figure 3 extended over many decades in wavenumber, 
the second-order structure functions plotted as in figure 13 would be flat. They decrease 
a t  small and large separations because a quantity with a separation r is determined 
by a band of wavenumbers centred at r-l. For large and small r part of this band is 
absent from the spectrum. The T = 6 data probably vary slightly more than their 
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FIGURE 14. Normalized sixth-order structure functions a t  T = 0 (solid line), T = 4.0s (upper 
dashed line) and T = 6.0s (lower dashed line). The data at r = 1 range from 9.0 to 12.0 for the 
three curves and are not meaningful for the reasons given in the text. The slopes of T - 0 6  and 
rePo cover the range of theoretical and experimental results for the quantity plotted. 

counterparts at T = 0 because the corresponding energy spectrum is somewhat 
steeper. The transverse second-order structure functions also do not change appreci- 
ably for T > 0 and their r dependence is similar to figure 13, though they are somewhat 
larger. 

The third-order structure function is analogous to a discrete skewness and after 
division by r is commonly used as an order-of-magnitude estimate of the energy 
transfer down the cascade. I ts  variation for small r is partially due to the energy 
dissipation occurring along the cascade. It decreases rapidly to zero near r = 16 
because the first band of wavenumbers is frozen in a random reffexion-invariant 
state. Initially, (SvS(r)) is an order of magnitude smaller than for T > 0.5s and of 
variable sign. Structure-function measurements have been reported by Van Atta & 
Chen (1970) and Van Atta & Park (1972). 

The high-order structure functions (defined by (3.3) for corresponding m) measured 
by Van Atta & Park (1972) scaled with separation but departed increasingly from 
Kolmogorov’s ( 1941) theory with increasing order. We calculated the longitudinal 
sixth-, ninth- and twelfth-order structure functions but the data became increasingly 
erratic and only the sixth-order results were reproduced. When scaled by r2, the 
sixth-order structure function is either flat or decreasing at small r .  This occurs for 
the same reasons as in figure 13. Judging by the data at T = 0 in figure 14, normalizing 
(SvS(r)) by (8v2(r))3 evidently overcorrects for this effect. 

The two test slopes in figure 14 correspond to two theoretical predictions. Both 
begin with Oboukhov’s (1 962) assumption that the same exponent p describes the 
variance of Sv3(r)/r and the dissipation fluctuations. This is in accord with the data 
of Van Atta & Park (1972). If (Sv2(r))  scaled as rf,  we should obtain a slope of r-0’5 

based onp  = 0.5 in figure 14. This is not very different from the lognormal prediction 
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FIGURE 15. Normalized volume-averaged dissipation fluctuations defined in (3.4). 
Note the different right- and left-hand scales. The initial data are dashed. 

r-*p (Kolmogorov 1962). The steeper line is a consequence of another theory that 
predicts (Sv2(r)) - rf--fp (Mandelbrot 1976; Frisch et al. 1978; Nelkin & Bell 1977). In  
view of the many possible systematic errors in our calculetion, figure 14 is probably 
consistent with any positive value of p. The data for ( & ~ ~ ~ ( r ) ) / r *  frequently increase 
with decreasing r but were too noisy to be useful. A time average would have improved 
the statistics. 

Two measures of the fluctuations in the volume-averaged dissipation are plotted 
in figure 15. We define 

(3.3) 

where r is an integer and the sum over R, runs over a cube 0fr3 points centred at some 
point pn. An average over pn is then performed. The trace of e2 was used in place of 
s(Rn) since all quantities are dimensionless. If E(R,) - (6) was uncorrelated at  different 
points, (€14) - ( s ) ~  would scale as r-3, which is nearly the slope of the initial data. The 
correlations evident in the data at T = 4s need not have any connexion with inter- 
mittency. Experirnent.simply(e~) - r-pwithp N 0-5 (Monin & Yaglom 1975, chap. 25). 
The increase in (6:) at, T = 0 for small r is not understood but may indicate aliasing 
problems. 

4. Discussion 
It has proved very simple to obtain stationary turbulence that is homogeneous and 

isotropic to a good approximation. Comparisons between two different methods of 
driving indicate that none of our results depend sensitively on the particular frozen 
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shear used in the first run. We also expect that the forcing used in a wave-vector 
sampling model of intermittency (Siggia 1977), 

for 2 6 k < 4, would have worked equally well here. 
We believe that any physically plausible dissipation function with a few adjustable 

paxameters can be tuned to give a reasonable - Q  power-law spectrum. This is in 
accord with empirical tests of subgrid models, which indicate that refinements of a 
simple eddy-damping model are seldom worth the increased computational com- 
plexity (Clark et al. 1977). In  the presence of intermittency, however, aneddy damping 
based on the local shear rate would be superior to the fixed viscosity we used. 

Kraichnan ( 1 9 7 6 4  has demonstrated that helicity fluctuations reduce the magnetic 
diffusion constant relative to its scalar counterpart even when the net helicity is zero. 
The precise amount depends on a number of characteristic times which we unfor- 
t,unately are unable to  estimate. It is also conceivable that sufficiently persistent 
fluctuations in the relative helicity could lead to the growth of randomly oriented but 
possibly intense fields that move along with their patch of helicity. The possibility of 
back transfer of magnetic energy or agglutination of small-scale random fields in the 
absence of injection of net kinetic or magnetic helicity does not seem to have been 
considered. 

Closure models imply that the turbulent cascade is local in Fourier space with most 
of the energy transferred into a band at  k coming from wavenumbers 2 +@ (Kraichnan 
19763). Our numerical experiments encompassed a wavenumber range of only 16 so 
imposing a - $ spectrum by suitable parameterizations might considerably distort 
the results. These distortions probably could not be uncovered without running a 643 
simulation. 

Comparisons with models of intermittency (Siggia 1977, 1978) are also relevant a t  
this point. These models achieve considerable simplifications by retaining only a 
fixed subset of the modes in each wavenumber octave. The total number of modes 
now increases only as the logarithm of the largest wave vector, but the intermittency 
is temporal. The process for selecting the modes to be retained is equivalent to de- 
scribing a spatially localized blob of fluid by means of wave packets. The simplest 
models retain interactions only between adjacent octaves. With these approximations, 
it  is of course much easier to  simulate a realistic range of wavenumbers. In addition, 
the effects of smaller scales on those retained is simple to parameterize in a convincing 
way. When the model constructed (Siggia 1977) was run with only three octaves, 
the intermittency was much reduced in comparison with the calculations for four 
octaves. A simpler model (Siggia 1978) gave no intermittency with three or fewer 
octaves but effectively an exponent ,u of 1 when run with four or more octaves. 

An optimistic appraisal of the above models suggests that our simulation should 
be marginally intermittent, but the numerous possible systematic errors preclude any 
firm conclusions. We nevertheless believe that it is of interest to compare the various 
determinants of intermittency both graphically and statistically and to examine the 
correlations between the  vorticity, rate of strain and helicity. 
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The frequent statement that  turbulence simulations look ‘ spotty ’ is meaningless 
unless some randomly distributed velocity field with the same gross characteristics is 
available for comparison. Our evolved flows did become spot,tier by generating a few 
sparse patches of intense vorticity or strain. While this is expected in an intermittent 
flow, the common statistical measures of intermittency were somewhat ambiguous. 
It is perhaps appropriate to note here that further analysis of the data used to generate 
figure 1 showed them to be as intermittent as those for the other runs at a nominally 
higher R,. This of course implies that  it is the range of wavenumbers that is limiting 
the growth of intermittency. 

Active regions appeared globular in three-dimensional perspective plots of t r  e2 
while analogous plots of the mean-square vorticity displayed a number of ‘banana ’ 
shaped regions. 

The authors have benefited from a number of conversations with U. Frisch, J. 
Herring, A. Pouquet and U. Schumann. L. Sapp assisted with the programming. 
This work was performed while the first author was a visitor a t  the National Center 
for Atmospheric Research, which is sponsored by the National Science Foundation. 
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